Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Dimethyl (1,1'-binaphthyl-2,2'-dioxy)diacetate

#### Asra Mustafa,<sup>a</sup> Muhammad Raza Shah,<sup>a</sup> Maimoona Khatoon<sup>a</sup> and Seik Weng Ng<sup>b</sup>\*

<sup>a</sup>HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 20 March 2009; accepted 24 March 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.085; wR factor = 0.195; data-to-parameter ratio = 15.2.

The two naphthyl fused-ring systems in the title compound,  $C_{22}H_{26}O_6$ , are aligned at 86.7 (1)°. Weak intermolecular C-H···O hydrogen bonding is present in the crystal structure.

#### **Related literature**

For the crystal structure of the parent carboxylic acid, see: Wu et al. (2007).



#### **Experimental**

*Crystal data* C<sub>26</sub>H<sub>22</sub>O<sub>6</sub>

 $M_r = 430.44$ 

Orthorhombic, *Pccn*  a = 17.1288 (5) Å b = 29.439 (1) Å c = 8.3518 (3) Å V = 4211.5 (3) Å<sup>3</sup>

#### Data collection

Bruker SMART APEX diffractometer Absorption correction: none 17329 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.085$  $wR(F^2) = 0.195$ S = 1.233700 reflections

Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$            | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------|------|-------------------------|--------------|---------------------------|
| $C3-H3\cdots O6^{i}$        | 0.95 | 2.38                    | 3.330 (3)    | 174                       |
| $C21 - H21A \cdots O6^{i}$  | 0.99 | 2.48                    | 3.326 (5)    | 143                       |
| $C26 - H26B \cdots O1^{ii}$ | 0.98 | 2.46                    | 3.338 (6)    | 149                       |
| Seman stars as door (i)     |      | - 1. (;;)               | 3            |                           |

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii)  $-x + \frac{3}{2}$ ,  $y, z - \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2498).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Wu, Y.-M., Cao, G.-Q., Qian, M.-Y. & Zhu, H.-J. (2007). Acta Cryst. E63, 03446.

Z = 8

Mo  $K\alpha$  radiation

 $0.27 \times 0.12 \times 0.05 \text{ mm}$ 

3700 independent reflections

2613 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

 $\mu = 0.10 \text{ mm}^-$ 

T = 123 K

 $R_{\rm int} = 0.069$ 

244 parameters

 $\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^-$ 

 $\Delta \rho_{\rm min} = -0.50 \text{ e } \text{\AA}^{-3}$ 

Acta Cryst. (2009). E65, o911 [doi:10.1107/S1600536809010824]

### Dimethyl (1,1'-binaphthyl-2,2'-dioxy)diacetate

### A. Mustafa, M. R. Shah, M. Khatoon and S. W. Ng

#### Comment

(type here to add)

#### **Experimental**

Potassium carbonate (0.55 g, 4 mmol) and 1,1'-binaphthyl-2,2'-diol (0.29 mg, 1 mmol) in acetone (10 ml) were stirred for 15 minutes. Methyl 2-chloroacetate (0.54 g, 10 mmol) was added and the mixture was stirred at 323 K for 24twenty-four hours. The solvent was removed and the residue was dissolved in a mixture of water (25 ml) and dichloromethane (25 ml). The two phases were separated and the aqueous layer was extracted with dichloromethane. The combined organic phases were dried and the solvent evaporated. The residue was dissolved recrystallized from dichloromethane (0.33 g, 80% yield).

#### Refinement

The crystal did not diffract strongly. To lower the observeds:parameters ratio, the fused rings were refined as rigid naphthalenes of 1.39 Å sides.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.99 Å) and were included in the refinement in the riding model approximation, with  $U_{iso}(H)$  set to 1.2 to 1.5 $U_{eq}(C)$ .

#### **Figures**



Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of  $C_{26}H_{22}O_6$  at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

#### Dimethyl (1,1'-binaphthyl-2,2'-dioxy)diacetate

| Crystal data                                   |                                              |
|------------------------------------------------|----------------------------------------------|
| C <sub>26</sub> H <sub>22</sub> O <sub>6</sub> | $F_{000} = 1808$                             |
| $M_r = 430.44$                                 | $D_{\rm x} = 1.358 {\rm ~Mg} {\rm ~m}^{-3}$  |
| Orthorhombic, Pccn                             | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ab 2ac                        | Cell parameters from 1966 reflections        |

| a = 17.1288 (5)  Å            | $\theta = 2.3 - 21.8^{\circ}$             |
|-------------------------------|-------------------------------------------|
| b = 29.439 (1)  Å             | $\mu = 0.10 \text{ mm}^{-1}$              |
| c = 8.3518 (3) Å              | <i>T</i> = 123 K                          |
| V = 4211.5 (3) Å <sup>3</sup> | Prism, colorless                          |
| Z = 8                         | $0.27 \times 0.12 \times 0.05 \text{ mm}$ |

### Data collection

| Bruker SMART APEX<br>diffractometer      | 2613 reflections with $I > 2\sigma(I)$ |
|------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube | $R_{\rm int} = 0.069$                  |
| Monochromator: graphite                  | $\theta_{\text{max}} = 25.0^{\circ}$   |
| T = 130  K                               | $\theta_{\min} = 1.4^{\circ}$          |
| ω scans                                  | $h = -19 \rightarrow 20$               |
| Absorption correction: None              | $k = -35 \rightarrow 34$               |
| 17329 measured reflections               | $l = -9 \rightarrow 9$                 |
| 3700 independent reflections             |                                        |

#### Refinement

| Refinement on $F^2$                                    | Hydrogen site location: inferred from neighbouring sites                                                    |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | H-atom parameters constrained                                                                               |
| $R[F^2 > 2\sigma(F^2)] = 0.085$                        | $w = 1/[\sigma^2(F_o^2) + (0.05P)^2 + 9P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                |
| $wR(F^2) = 0.195$                                      | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                         |
| <i>S</i> = 1.23                                        | $\Delta \rho_{max} = 0.57 \text{ e } \text{\AA}^{-3}$                                                       |
| 3700 reflections                                       | $\Delta \rho_{min} = -0.50 \text{ e } \text{\AA}^{-3}$                                                      |
| 244 parameters                                         | Extinction correction: SHELXL97 (Sheldrick, 2008),<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Primary atom site location: structure-invariant direct | Extinction coefficient: 0.0039 (6)                                                                          |

methods

Secondary atom site location: difference Fourier map

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|    | x            | У            | Ζ          | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|----|--------------|--------------|------------|-------------------------------|
| O1 | 0.49537 (14) | 0.44569 (9)  | 0.6224 (3) | 0.0253 (7)                    |
| O2 | 0.41229 (16) | 0.50497 (10) | 0.9571 (4) | 0.0349 (8)                    |
| O3 | 0.43431 (17) | 0.43116 (9)  | 0.9055 (4) | 0.0334 (7)                    |
| O4 | 0.56053 (15) | 0.38327 (10) | 0.2796 (4) | 0.0331 (7)                    |
| O5 | 0.75115 (16) | 0.41527 (10) | 0.1635 (4) | 0.0367 (8)                    |
| O6 | 0.67299 (16) | 0.44878 (10) | 0.3437 (4) | 0.0351 (8)                    |
| C1 | 0.44243 (9)  | 0.38011 (6)  | 0.4970 (3) | 0.0247 (9)                    |
| C2 | 0.43217 (11) | 0.42447 (6)  | 0.5501 (3) | 0.0232 (9)                    |
| C3 | 0.36353 (12) | 0.44760 (5)  | 0.5150 (3) | 0.0260 (9)                    |
| Н3 | 0.3565       | 0.4779       | 0.5512     | 0.031*                        |
| C4 | 0.30515 (10) | 0.42638 (5)  | 0.4268 (3) | 0.0293 (10)                   |

| -                | U <sup>11</sup> U        | $U^{33}$     | $U^{12}$   | $U^{13}$        | U <sup>23</sup> |
|------------------|--------------------------|--------------|------------|-----------------|-----------------|
| Atomic displacem | tient parameters ( $Å^2$ | )            |            |                 |                 |
| H26C             | 0.8219                   | 0.4376       | 0.3383     | 0.066*          |                 |
| H26B             | 0.8642                   | 0.4333       | 0.1681     | 0.066*          |                 |
| H26A             | 0.8058                   | 0.4746       | 0.2020     | 0.066*          |                 |
| C26              | 0.8161 (3)               | 0.44240 (17) | 0.2228 (6) | 0.0441 (13)     |                 |
| C25              | 0.6833 (2)               | 0.42214 (14) | 0.2373 (5) | 0.0279 (10)     |                 |
| H24B             | 0.6457                   | 0.3621       | 0.1358     | 0.037*          |                 |
| H24A             | 0.5997                   | 0.4056       | 0.0694     | 0.037*          |                 |
| C24              | 0.6217 (2)               | 0.39136 (15) | 0.1669 (5) | 0.0312 (10)     |                 |
| H23C             | 0.4397                   | 0.4229       | 1.1447     | 0.057*          |                 |
| H23B             | 0.3553                   | 0.4382       | 1.0825     | 0.057*          |                 |
| H23A             | 0.3838                   | 0.3869       | 1.0577     | 0.057*          |                 |
| C23              | 0.4005 (3)               | 0.41876 (16) | 1.0604 (5) | 0.0378 (11)     |                 |
| C22              | 0.4379 (2)               | 0.47498 (14) | 0.8724 (5) | 0.0277 (10)     |                 |
| H21B             | 0.5316                   | 0.4991       | 0.7444     | 0.030*          |                 |
| H21A             | 0.4502                   | 0.5067       | 0.6547     | 0.030*          |                 |
| C21              | 0.4810 (2)               | 0.48465 (13) | 0.7182 (5) | 0.0251 (9)      |                 |
| H20              | 0.6715                   | 0.2761       | 0.8613     | 0.051*          |                 |
| C20              | 0.5754                   | 0.2099       | 0.8434(2)  | 0.039           |                 |
| H10              | 0.50572 (15)             | 0.26002 (8)  | 1.0551     | 0.0493 (14)     |                 |
| C19              | 0.4314<br>0 56372 (15)   | 0.2024       | 0.9585(2)  | $0.034^{\circ}$ |                 |
| U10<br>H18       | 0.49122 (14)             | 0.30369 (8)  | 0.9525 (2) | 0.0440(13)      |                 |
| C18              | 0.4274<br>0.40122 (14)   | 0.3430       | 0.7731     | 0.044           |                 |
| UI/<br>H17       | 0.47698 (10)             | 0.32941 (8)  | 0.7910(2)  | 0.0305 (11)     |                 |
| C10              | 0.55524 (8)              | 0.33305(5)   | 0.0758(2)  | 0.0281(10)      |                 |
|                  | 0.60774 (9)              | 0.31317 (5)  | 0.7020 (2) | 0.0304 (10)     |                 |
| H14              | 0.7155                   | 0.3032       | 0.6048     | 0.041*          |                 |
| C14              | 0.66599 (9)              | 0.31681 (7)  | 0.5869 (3) | 0.0342 (11)     |                 |
| H13              | 0.6916                   | 0.3428       | 0.3668     | 0.040*          |                 |
| C13              | 0.65175 (11)             | 0.34032 (8)  | 0.4455 (2) | 0.0334 (11)     |                 |
| C12              | 0.57926 (12)             | 0.36020 (7)  | 0.4193 (2) | 0.0278 (10)     |                 |
| C11              | 0.52100 (10)             | 0.35656 (7)  | 0.5345 (2) | 0.0251 (9)      |                 |
| H10              | 0.2101                   | 0.3766       | 0.2616     | 0.044*          |                 |
| C10              | 0.25703 (10)             | 0.36081 (7)  | 0.2856 (3) | 0.0366 (11)     |                 |
| H9               | 0.2274                   | 0.3020       | 0.1723     | 0.054*          |                 |
| C9               | 0.26729 (13)             | 0.31646 (7)  | 0.2326 (3) | 0.0453 (13)     |                 |
| H8               | 0.3429                   | 0.2630       | 0.2314     | 0.057*          |                 |
| C8               | 0.33593 (14)             | 0.29333 (6)  | 0.2677 (3) | 0.0478 (13)     |                 |
| H7               | 0.4412                   | 0.2987       | 0.3798     | 0.044*          |                 |
| C7               | 0.39431 (11)             | 0.31454 (5)  | 0.3558 (3) | 0.0370 (11)     |                 |
| C6               | 0.38405 (8)              | 0.35890 (5)  | 0.4089 (2) | 0.0267 (9)      |                 |
| C5               | 0.31541 (8)              | 0.38203 (5)  | 0.3738 (2) | 0.0289 (10)     |                 |
| H4               | 0.2582                   | 0.4422       | 0.4028     | 0.035*          |                 |
|                  |                          |              |            |                 |                 |

0.0193 (13) 0.0271 (15) 0.0295 (17) 0.0006 (11) 0.0016 (12) -0.0053 (13)

01

| O2  | 0.0353 (16) | 0.0398 (17) | 0.0297 (18) | 0.0082 (14)  | 0.0038 (14)  | -0.0048 (15) |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| O3  | 0.0429 (17) | 0.0302 (16) | 0.0271 (17) | -0.0061 (13) | 0.0034 (14)  | 0.0016 (14)  |
| O4  | 0.0216 (14) | 0.0433 (18) | 0.0346 (18) | 0.0013 (12)  | 0.0041 (13)  | 0.0074 (15)  |
| O5  | 0.0238 (14) | 0.0423 (17) | 0.044 (2)   | -0.0057 (13) | 0.0102 (14)  | -0.0114 (16) |
| O6  | 0.0338 (16) | 0.0358 (17) | 0.0356 (18) | 0.0062 (13)  | 0.0020 (14)  | -0.0068 (16) |
| C1  | 0.022 (2)   | 0.025 (2)   | 0.027 (2)   | 0.0001 (16)  | 0.0015 (17)  | 0.0037 (19)  |
| C2  | 0.0209 (19) | 0.028 (2)   | 0.020 (2)   | -0.0054 (16) | 0.0017 (17)  | 0.0017 (18)  |
| C3  | 0.023 (2)   | 0.029 (2)   | 0.025 (2)   | 0.0010 (17)  | 0.0026 (17)  | 0.0002 (19)  |
| C4  | 0.020 (2)   | 0.036 (2)   | 0.031 (2)   | 0.0028 (17)  | 0.0018 (18)  | 0.009 (2)    |
| C5  | 0.022 (2)   | 0.036 (2)   | 0.029 (2)   | -0.0070 (17) | -0.0004 (18) | 0.009 (2)    |
| C6  | 0.026 (2)   | 0.027 (2)   | 0.027 (2)   | -0.0061 (16) | 0.0037 (18)  | 0.0028 (19)  |
| C7  | 0.031 (2)   | 0.035 (2)   | 0.045 (3)   | -0.0047 (19) | -0.005 (2)   | 0.002 (2)    |
| C8  | 0.045 (3)   | 0.033 (3)   | 0.065 (4)   | -0.015 (2)   | -0.005 (3)   | 0.000 (3)    |
| C9  | 0.038 (3)   | 0.045 (3)   | 0.053 (3)   | -0.021 (2)   | -0.011 (2)   | 0.004 (3)    |
| C10 | 0.025 (2)   | 0.043 (3)   | 0.043 (3)   | -0.0110 (19) | -0.002 (2)   | 0.012 (2)    |
| C11 | 0.023 (2)   | 0.022 (2)   | 0.030 (2)   | -0.0037 (16) | -0.0040 (18) | -0.0036 (19) |
| C12 | 0.025 (2)   | 0.024 (2)   | 0.034 (3)   | -0.0029 (16) | -0.0050 (19) | -0.001 (2)   |
| C13 | 0.022 (2)   | 0.029 (2)   | 0.049 (3)   | -0.0001 (17) | 0.000 (2)    | -0.006 (2)   |
| C14 | 0.025 (2)   | 0.021 (2)   | 0.056 (3)   | 0.0032 (17)  | -0.011 (2)   | -0.003 (2)   |
| C15 | 0.031 (2)   | 0.020 (2)   | 0.041 (3)   | 0.0019 (17)  | -0.012 (2)   | -0.003 (2)   |
| C16 | 0.029 (2)   | 0.021 (2)   | 0.034 (3)   | -0.0037 (16) | -0.0042 (19) | 0.000 (2)    |
| C17 | 0.040 (3)   | 0.028 (2)   | 0.042 (3)   | 0.0017 (19)  | -0.003 (2)   | 0.005 (2)    |
| C18 | 0.056 (3)   | 0.035 (3)   | 0.043 (3)   | 0.002 (2)    | 0.002 (2)    | 0.011 (2)    |
| C19 | 0.069 (4)   | 0.028 (2)   | 0.051 (3)   | 0.003 (2)    | -0.020 (3)   | 0.008 (2)    |
| C20 | 0.043 (3)   | 0.027 (2)   | 0.058 (3)   | 0.005 (2)    | -0.015 (3)   | -0.005 (2)   |
| C21 | 0.026 (2)   | 0.022 (2)   | 0.027 (2)   | -0.0015 (16) | 0.0001 (18)  | -0.0026 (18) |
| C22 | 0.023 (2)   | 0.034 (2)   | 0.026 (2)   | 0.0006 (17)  | -0.0042 (18) | -0.001 (2)   |
| C23 | 0.039 (3)   | 0.044 (3)   | 0.030 (3)   | -0.010 (2)   | 0.000 (2)    | 0.006 (2)    |
| C24 | 0.026 (2)   | 0.036 (2)   | 0.032 (3)   | 0.0001 (17)  | 0.0076 (19)  | -0.002 (2)   |
| C25 | 0.030 (2)   | 0.025 (2)   | 0.029 (2)   | 0.0056 (17)  | 0.0039 (19)  | 0.003 (2)    |
| C26 | 0.032 (2)   | 0.053 (3)   | 0.046 (3)   | -0.011 (2)   | 0.002 (2)    | -0.007 (3)   |

## Geometric parameters (Å, °)

| O1—C2  | 1.388 (3) | C11—C16 | 1.3900 |
|--------|-----------|---------|--------|
| O1—C21 | 1.420 (5) | C12—C13 | 1.3900 |
| O2—C22 | 1.213 (5) | C13—C14 | 1.3900 |
| O3—C22 | 1.321 (5) | С13—Н13 | 0.9500 |
| O3—C23 | 1.464 (5) | C14—C15 | 1.3900 |
| O4—C12 | 1.388 (3) | C14—H14 | 0.9500 |
| O4—C24 | 1.428 (5) | C15—C16 | 1.3900 |
| O5—C25 | 1.330 (5) | C15—C20 | 1.3900 |
| O5—C26 | 1.456 (5) | C16—C17 | 1.3900 |
| O6—C25 | 1.199 (5) | C17—C18 | 1.3900 |
| C1—C2  | 1.3900    | С17—Н17 | 0.9500 |
| C1—C6  | 1.3900    | C18—C19 | 1.3900 |
| C2—C3  | 1.3900    | C18—H18 | 0.9500 |
| C3—C4  | 1.3900    | C19—C20 | 1.3900 |
| С3—Н3  | 0.9500    | С19—Н19 | 0.9500 |

| C4—C5                            | 1.3900               | С20—Н20                                | 0.9500    |
|----------------------------------|----------------------|----------------------------------------|-----------|
| С4—Н4                            | 0.9500               | C21—C22                                | 1.511 (6) |
| С5—С6                            | 1.3900               | C21—H21A                               | 0.9900    |
| C5—C10                           | 1.3900               | C21—H21B                               | 0.9900    |
| С6—С7                            | 1.3900               | С23—Н23А                               | 0.9800    |
| С7—С8                            | 1.3900               | C23—H23B                               | 0.9800    |
| С7—Н7                            | 0.9500               | C23—H23C                               | 0.9800    |
| C8—C9                            | 1.3900               | C24—C25                                | 1.511 (6) |
| С8—Н8                            | 0.9500               | C24—H24A                               | 0.9900    |
| C9—C10                           | 1.3900               | C24—H24B                               | 0.9900    |
| С9—Н9                            | 0.9500               | С26—Н26А                               | 0.9800    |
| С10—Н10                          | 0.9500               | C26—H26B                               | 0.9800    |
| C11—C12                          | 1.3900               | С26—Н26С                               | 0.9800    |
| $C_{2} = 0_{1} = C_{2}^{1}$      | 118 3 (2)            | C17 - C16 - C15                        | 120.0     |
| $C_{2}^{2} = 0^{3} = C_{2}^{23}$ | 116.5(2)             | $C_{17} = C_{16} = C_{13}$             | 120.0     |
| $C_{22} = 0.05 = 0.023$          | 110.5(3)             | $C_{1}^{-1} = C_{1}^{-1} = C_{1}^{-1}$ | 120.0     |
| $C_{12} = 04 = 024$              | 117.0(3)<br>115.2(2) | $C_{15} = C_{10} = C_{11}$             | 120.0     |
| $C_{23} = 0_{3} = 0_{20}$        | 113.2 (3)            | $C_{10} = C_{17} = C_{18}$             | 120.0     |
| $c_2 - c_1 - c_0$                | 120.0                | $C_{10} = C_{17} = H_{17}$             | 120.0     |
| 01 - 02 - 02                     | 117.57 (10)          | $C_{10} = C_{17} = M_{17}$             | 120.0     |
| 01 - 02 - 03                     | 122.00 (10)          | $C_{19} = C_{18} = C_{17}$             | 120.0     |
| $C_1 = C_2 = C_3$                | 120.0                | C19 - C18 - H18                        | 120.0     |
| $C_4 = C_3 = C_2$                | 120.0                | C17 - C18 - H18                        | 120.0     |
| $C_{4} = C_{5} = H_{5}$          | 120.0                | $C_{18} = C_{19} = C_{20}$             | 120.0     |
| C2-C3-H3                         | 120.0                | C18-C19-H19                            | 120.0     |
| $C_{3} = C_{4} = C_{3}$          | 120.0                | C10 C20 C15                            | 120.0     |
| C5_C4_H4                         | 120.0                | C19 - C20 - C13                        | 120.0     |
| C3-C4-H4                         | 120.0                | C19 - C20 - H20                        | 120.0     |
| $C_{0} = C_{3} = C_{4}$          | 120.0                | C15 - C20 - H20                        | 120.0     |
| $C_{6} = C_{5} = C_{10}$         | 120.0                | 01 - 021 - 022                         | 114.4 (3) |
| C4 - C5 - C10                    | 120.0                | OI = C2I = H2IA                        | 108.7     |
| $C/-C_{0}$                       | 120.0                | C22—C21—H2IA                           | 108.7     |
| C/=C6=C1                         | 120.0                | OI = C2I = H2IB                        | 108.7     |
| C5-C6-C1                         | 120.0                | C22—C21—H2IB                           | 108.7     |
| $C_8 - C_7 - C_6$                | 120.0                | H2IA-C2I-H2IB                          | 107.6     |
| C8—C7—H7                         | 120.0                | 02 - 022 - 03                          | 124.9 (4) |
| C6—C/—H/                         | 120.0                | 02-022-021                             | 122.4 (4) |
| C/-C8-C9                         | 120.0                | 03-022-021                             | 112.6 (3) |
| C/C8H8                           | 120.0                | 03—C23—H23A                            | 109.5     |
| С9—С8—Н8                         | 120.0                | 03—C23—H23B                            | 109.5     |
| C10-C9-C8                        | 120.0                | H23A—C23—H23B                          | 109.5     |
| C10—C9—H9                        | 120.0                | 03—C23—H23C                            | 109.5     |
| С8—С9—Н9                         | 120.0                | H23A—C23—H23C                          | 109.5     |
| C9—C10—C5                        | 120.0                | H23B—C23—H23C                          | 109.5     |
| C9—C10—H10                       | 120.0                | 04—C24—C25                             | 110.9 (4) |
| C5—C10—H10                       | 120.0                | U4—C24—H24A                            | 109.5     |
| C12—C11—C16                      | 120.0                | C25—C24—H24A                           | 109.5     |
| 04                               | 123.01 (16)          | 04—C24—H24B                            | 109.5     |
| 04—C12—C11                       | 116.98 (16)          | C25—C24—H24B                           | 109.5     |
| C13—C12—C11                      | 120.0                | H24A—C24—H24B                          | 108.0     |

| C12—C13—C14     | 120.0      | O6—C25—O5       | 124.9 (4)  |
|-----------------|------------|-----------------|------------|
| С12—С13—Н13     | 120.0      | O6—C25—C24      | 125.3 (4)  |
| С14—С13—Н13     | 120.0      | O5—C25—C24      | 109.8 (4)  |
| C15—C14—C13     | 120.0      | O5—C26—H26A     | 109.5      |
| C15—C14—H14     | 120.0      | O5—C26—H26B     | 109.5      |
| C13—C14—H14     | 120.0      | H26A—C26—H26B   | 109.5      |
| C14—C15—C16     | 120.0      | O5—C26—H26C     | 109.5      |
| C14—C15—C20     | 120.0      | H26A—C26—H26C   | 109.5      |
| C16—C15—C20     | 120.0      | H26B—C26—H26C   | 109.5      |
| C21—O1—C2—C1    | -161.7 (2) | C11—C12—C13—C14 | 0.0        |
| C21—O1—C2—C3    | 25.3 (4)   | C12-C13-C14-C15 | 0.0        |
| C6-C1-C2-O1     | -173.2 (2) | C13-C14-C15-C16 | 0.0        |
| C6—C1—C2—C3     | 0.0        | C13—C14—C15—C20 | 180.0      |
| O1—C2—C3—C4     | 172.9 (2)  | C14-C15-C16-C17 | 180.0      |
| C1—C2—C3—C4     | 0.0        | C20-C15-C16-C17 | 0.0        |
| C2—C3—C4—C5     | 0.0        | C14-C15-C16-C11 | 0.0        |
| C3—C4—C5—C6     | 0.0        | C20-C15-C16-C11 | 180.0      |
| C3—C4—C5—C10    | 180.0      | C12-C11-C16-C17 | 180.0      |
| C4—C5—C6—C7     | 180.0      | C12-C11-C16-C15 | 0.0        |
| C10-C5-C6-C7    | 0.0        | C15-C16-C17-C18 | 0.0        |
| C4—C5—C6—C1     | 0.0        | C11-C16-C17-C18 | 180.0      |
| C10-C5-C6-C1    | 180.0      | C16-C17-C18-C19 | 0.0        |
| C2-C1-C6-C7     | 180.0      | C17—C18—C19—C20 | 0.0        |
| C2—C1—C6—C5     | 0.0        | C18-C19-C20-C15 | 0.0        |
| C5—C6—C7—C8     | 0.0        | C14—C15—C20—C19 | 180.0      |
| C1—C6—C7—C8     | 180.0      | C16-C15-C20-C19 | 0.0        |
| C6—C7—C8—C9     | 0.0        | C2-01-C21-C22   | 68.8 (4)   |
| C7—C8—C9—C10    | 0.0        | C23—O3—C22—O2   | -3.5 (6)   |
| C8—C9—C10—C5    | 0.0        | C23—O3—C22—C21  | 174.1 (3)  |
| C6—C5—C10—C9    | 0.0        | O1—C21—C22—O2   | -170.2 (4) |
| C4—C5—C10—C9    | 180.0      | O1—C21—C22—O3   | 12.1 (5)   |
| C24—O4—C12—C13  | -7.6 (4)   | C12—O4—C24—C25  | -64.1 (4)  |
| C24—O4—C12—C11  | 173.8 (2)  | C26—O5—C25—O6   | 1.1 (6)    |
| C16—C11—C12—O4  | 178.6 (2)  | C26—O5—C25—C24  | -178.8 (4) |
| C16-C11-C12-C13 | 0.0        | O4—C24—C25—O6   | -24.5 (6)  |
| O4—C12—C13—C14  | -178.5 (2) | O4—C24—C25—O5   | 155.4 (3)  |

# Hydrogen-bond geometry (Å, °)

| D—H··· $A$                                                                     | <i>D</i> —Н | H···A | $D \cdots A$ | D—H···A |  |  |
|--------------------------------------------------------------------------------|-------------|-------|--------------|---------|--|--|
| C3—H3···O6 <sup>i</sup>                                                        | 0.95        | 2.38  | 3.330 (3)    | 174     |  |  |
| C21—H21A···O6 <sup>i</sup>                                                     | 0.99        | 2.48  | 3.326 (5)    | 143     |  |  |
| C26—H26B···O1 <sup>ii</sup>                                                    | 0.98        | 2.46  | 3.338 (6)    | 149     |  |  |
| Symmetry codes: (i) $-x+1$ , $-y+1$ , $-z+1$ ; (ii) $-x+3/2$ , $y$ , $z-1/2$ . |             |       |              |         |  |  |

